

INSTITUTO DE MEDICINA INTEGRAL PROF. FERNANDO FIGUEIRA -IMIP PROGRAMA DE BOLSAS DE INICIAÇÃO CIENTÍFICA PIC - IMIP/CNPq – 2024/2025

CARACTERIZAÇÃO DO PERFIL CLÍNICO-EPIDEMIOLÓGICO DE PACIENTES COM LEUCEMIA PROMIELOCÍTICA AGUDA EM HOSPITAL TERCIÁRIO ENTRE 2017 E 2022

CHARACTERIZATION OF THE CLINICAL-EPIDEMIOLOGICAL PROFILE OF PATIENTS WITH ACUTE PROMYELOCYTIC LEUKEMIA IN A TERTIARY HOSPITAL BETWEEN 2017 AND 2022

João Vitor Cordeiro Andrade Rego¹

Alice Guerra Barretto da Costa²

Antônio Henrique de Arruda Antunes³

Emília Gomes Bezerra⁴

Leticia Roma Maracajá⁵

Luísa Bezerra Wanderley⁶

Thatyana de Oliveira Maranhão Cavalcanti⁷

Arilson Santos Alves da Silva⁸

- Estudante bolsista: João Vitor Cordeiro Andrade Rego. Acadêmico do 9º período de Medicina na Faculdade Pernambucana de Saúde - FPS.ORCID: https://orcid.org/0009-0001-3552-3296.
- 2. Coautora: Alice Guerra Barretto da Costa. Acadêmica do 9º período de Medicina na Faculdade Pernambucana de Saúde FPS. ORCID: https://orcid.org/0009-0000-1506-4777.
- **3.** Coautor: Antonio Henrique de Arruda Antunes. Acadêmico do 9º período de Medicina na Faculdade Pernambucana de Saúde FPS. ORCID: https://orcid.org/0009-0004-4719-6140.
- **4. Coautora:** Emília Gomes Bezerra. Acadêmica do 9º período de Medicina na Faculdade Pernambucana de Saúde FPS. ORCID: https://orcid.org/0000-0001-6447-3307
- **5. Coautora:** Leticia Roma Maracajá. Graduada em Psicologia pela Faculdade Pernambucana de Saúde FPS. ORCID: https://orcid.org/0009-0007-6833-4831.
- **6.** Coautora: Luísa Bezerra Wanderley. Acadêmica do 9º período de Medicina na Faculdade Pernambucana de Saúde FPS. ORCID: https://orcid.org/0009-0003-5480-3896.
- 7. Orientadora: Thatyana de Oliveira Maranhão Cavalcanti. Função: Docente da Faculdade Pernambucana de Saúde FPS; Mestranda em Cuidados Paliativos pelo Instituto de Medicina Integral Prof. Fernando Figueira IMIP; Médica de Família e Comunidade (Ensp/FIOCRUZ-RJ); Paliativista (IMIP). Preceptora da enfermaria e ambulatório de Cuidados Paliativos (IMIP); Supervisora acadêmica do programa Mais Médicos para o Brasil; Facilitadora da pós-graduação em Medicina de Família e Comunidade do programa Mais Médicos para o Brasil. ORCID: https://orcid.org/0009-0002-3340-4258.
- **8.** Coorientador: Arilson Santos Alves da Silva. Função: Mestrando em Cuidados Paliativos pelo Instituto de Medicina Integral Prof. Fernando Figueira (IMIP); Residente em Hematologia e Hemoterapia pelo Instituto de Medicina Integral Prof. Fernando Figueira (IMIP); Residência em Clínica Médica pela Santa Casa de Misericórdia do Recife (2021-2023); Docente na Faculdade de Medicina do Sertão FMS (Arcoverde-PE) e na Faculdade Integrada Tiradentes FITS (Goiana-PE). ORCID: https://orcid.org/0000-0001-6129-4944.

RESUMO

Introdução: A leucemia promielocítica aguda (LPA) é um subtipo da leucemia mieloide aguda, representando cerca de 15% dos casos. Caracteriza-se pelo bloqueio da diferenciação na fase promielocítica, com acúmulo de células imaturas na medula óssea. Clinicamente, associa-se à coagulação intravascular disseminada, hiperfibrinólise, sangramentos graves, fadiga e infecções. A pandemia de COVID-19 impactou o diagnóstico, reduzindo a detecção de casos e atrasando o intervalo do sintoma ao diagnóstico em Pernambuco. Objetivos: Caracterizar o perfil epidemiológico de pacientes com LPA diagnosticados no HEMOPE entre 2017 e 2022. Métodos: Estudo observacional, transversal e descritivo, incluindo todos os casos confirmados no período. Os dados foram analisados no JAMOVI 2.6, com estatística descritiva e testes de associação (p<0,05). **Resultados:** Foram avaliados 67 pacientes, predominando o sexo feminino (56,7%), idade média 41,7 anos. A maioria era parda (77,6%) e residente em áreas urbanas (70,1%). Sintomas mais comuns: sangramento (72,7%), he matomas (59,1%) e astenia (50%). Estratificação de risco: 44,8% intermediário, 35,8% alto e 10,4% baixo. A taxa de remissão geral foi 67,2%, mortalidade 20,9%. Todos os pacientes >60 anos com desfecho conhecido evoluíram para óbito. Conclusões: A LPA permanece grave, com alta mortalidade precoce. Idade avançada foi o principal fator prognóstico adverso.

Palavras-chave: Leucemia promielocítica aguda; COVID-19; Coagulopatias.

ABSTRACT

Introduction: Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia, accounting for approximately 15% of cases. It is characterized by a block in differentiation at the promyelocyte stage, leading to the accumulation of immature cells in the bone marrow. Clinically, it is associated with disseminated intravascular coagulation, hyperfibrinolysis, severe bleeding, fatigue, and infections. The COVID-19 pandemic impacted diagnosis, reducing case detection and delaying the symptom-to-diagnosis interval in Pernambuco. Objectives: To characterize the epidemiological profile of patients diagnosed with APL at HEMOPE between 2017 and 2022. Methods: Observational, cross-sectional, descriptive study including all confirmed cases during the period. Data were analyzed using JAMOVI 2.6, applying descriptive statistics and association tests (p<0.05). Results: Sixty-seven patients were evaluated, predominantly female (56.7%), mean age 41.7 years. Most were mixed-race (77.6%) and from urban areas (70.1%). The most frequent symptoms were bleeding (72.7%), bruises (59.1%), and asthenia (50%). Risk stratification: 44.8% intermediate, 35.8% high, and 10.4% low. The overall remission rate was 67.2%, mortality 20.9%. All patients >60 years with known outcomes died. Conclusions: APL remains a severe disease with high early mortality. Advanced age was the main adverse prognostic factor.

Keywords: Acute Promyelocytic Leukemia, COVID-19; Blood coagulation disorder.

INTRODUÇÃO

A hematopoiese é um processo dinâmico e rigorosamente regulado, no qual células-tronco hematopoéticas se diferenciam em linhagens mieloides e linfoides, garantindo a renovação celular e a manutenção da homeostase, especialmente em situações de maior demanda proliferativa. Alterações genéticas que comprometem esse equilíbrio podem interromper a maturação normal e culminar na expansão clonal de células imaturas, conhecidas como células leucêmicas, que ocupam a medula óssea e substituem a hematopoiese fisiológica.

A leucemia, nesse contexto, constitui um grupo de neoplasias hematológicas cuja apresentação clínica varia conforme o subtipo e a faixa etária acometida. Dados globais de 2018 apontam a doença como a 15ª neoplasia mais incidente e a 11ª causa de mortalidade por câncer no mundo. Enquanto as formas crônicas predominam em idades avançadas, as leucemias agudas são mais comuns na infância, embora apresentem distribuição bimodal. 3

A leucemia aguda é classificada em dois grupos: leucemia linfoide aguda (LLA) e leucemia mieloide aguda (LMA). A LMA constitui um grupo heterogêneo de malignidades hematopoiéticas sendo a leucemia mieloide aguda o tipo mais comum em adultos, além de apresentar uma taxa de sobrevida baixa. Dentre as subdivisões da LMA, destaca-se a Leucemia promielocítica aguda (LPA), a qual é responsável por 15% dos casos, sendo caracterizada pela interrupção da maturação das células leucêmicas com consequente acúmulo de células semelhantes a promielócitos na medula óssea. 6

A LPA é caracterizada pela fusão do gene da leucemia promielocítica (PML) com o gene do receptor do ácido retinoico-α (RARα) como resultado de uma translocação balanceada entre os cromossomos 15 e 17, criando o PML-RARα. Essa proteína de fusão oncogênica leva a um bloque io da diferenciação mieloide na fase promielocítica da mielopoiese. Morfologicamente, apresenta dois subtipos: o hipergranular, caracterizado por promielócitos com abundantes grânulos citoplasmáticos e bastonetes de Auer, e o microgranular, no qual a escassez de grânulos e a ausência frequente de bastonetes dificultam o reconhecimento celular.⁷⁻⁹

As manifestações clínicas da LPA ocorrem devido à proliferação desordenada das células mutadas, que ocupam todo o espaço das células normais na medula óssea, ocasionando a paralisação da produção de leucócitos, de eritrócitos e de plaquetas, levando a sintomas relacionados a supressão da função da medula óssea como infecção, fadiga e hemorragia. A LPA é diferenciada pela associação desses sintomas com a presença de coagulopatia agressiva,

caracterizada por um estado de coagulação intravascular disseminada e hiperfibrinólise. ^{6,10} De semelhante modo, ocorrem, em alguns casos, a infiltração de órgãos e tecidos, sendo os mais relatados linfadenopatia, esplenomegalia, hepatomegalia, mieloblastoma e dor óssea. ¹¹

O diagnóstico da LPA inicia-se com o hemograma, que geralmente evidencia anemia, trombocitopenia e alterações na contagem de leucócitos, como hiperleucocitose. ¹² A confirmação é obtida por meio de exames morfológicos, citoquímicos, imunofenotípicos e citogenéticos, associados à biópsia de medula óssea. ^{11,13} O teste molecular para detecção do transcrito de fusão PML-RARα é considerado o padrão-ouro, pois além de confirmar o diagnóstico, permite monitorar doença residual mínima ao longo do tratamento. Após o diagnóstico, os pacientes são estratificados em grupos de risco com base na contagem inicial de leucócitos e plaquetas: baixo risco (leucócitos ≤10.000/μL e plaquetas >40.000/μL), risco intermediário (leucócitos ≤10.000/μL e plaquetas ≤40.000/μL) e alto risco (leucócitos >10.000/μL), classificação que orienta a intensidade terapêutica e influencia o prognóstico. ¹⁴

O tratamento da LPA foi transformado pelo uso de fármacos como o ácido all-trans retinóico (ATRA) e o trióxido arsênico (ATO), responsáveis por melhorar significativamente a eficácia terapêutica¹⁵. A combinação de ATRA com agentes quimioterápicos é considerada terapia padrão, e a associação de ATRA e ATO mostra-se eficaz, especialmente em pacientes de baixo risco, mitigando a necessidade de quimioterapia nesse grupo. ^{16,17} Além disso, medidas de suporte para manejar a coagulopatia são de extrema importância, destacando a transfusão de fibrinogênio, plaquetas, crioprecipitado e plasma sanguíneo. ¹⁸

Em janeiro de 2020, a OMS declarou emergência global diante da disseminação do SARS-CoV-2, identificado inicialmente em Wuhan, China. A pandemia exigiu a reorganização dos sistemas de saúde e, associada ao distanciamento social, trouxe riscos adicionais para pacientes oncológicos. ¹⁹ Nesse contexto, em Pernambuco, observou-se redução no número de diagnósticos de LPA e prolongamento do intervalo entre início dos sintomas e confirmação da doença. ²⁰

Portanto, diante da escassez de estudos atualizados sobre o tema, faz-se necessário um trabalho acerca da caracterização do perfil clínico-epidemiológico dos pacientes portadores de LPA, no período de 2017 a 2022, em um centro de referência no Nordeste do Brasil, visando identificar possíveis padrões da doença e fatores de riscos associados. Além disso, o período escolhido ainda permite avaliar o impacto da pandemia de COVID-19 na sobrevida dos pacientes com LPA. Desse modo, como a Fundação de Hematologia e Hemoterapia de Pernambuco

(HEMOPE) é centro de referência do Sistema Único de Saúde para o tratamento de mais de 90% dos casos de LPA no adulto em Pernambuco torna-se o campo ideal para a coleta de dados do projeto. 19,20

MÉTODOS

Trata-se de um estudo observacional, de coorte transversal e caráter descritivo, que analisou o perfil clínico e epidemiológico dos pacientes diagnosticados com leucemia promielocítica aguda entre os anos de 2017 e 2022 no hospital. O estudo foi realizado no Hemocentro de Pernambuco (HEMOPE), localizado na cidade do Recife – PE. O HEMOPE é uma instituição de referência estadual em Hematologia e Hemoterapia, prestando assistência especializada a pacientes com doenças hematológicas e onco-hematológicas. A coleta de dados foi conduzida no período de setembro de 2024 a julho de 2025.

Foram incluídos todos os pacientes com diagnóstico confirmado de LPA entre os anos de 2017 e 2022, acompanhados no HEMOPE durante o período do estudo. Foram excluídos os casos com prontuários incompletos ou cujas informações essenciais inviabilizassem a análise das variáveis propostas. Os dados foram obtidos a partir dos registros eletrônicos e físicos dos prontuários, mediante instrumento padronizado em planilha eletrônica. As variáveis coletadas incluíram dados sociodemográficos, clínicos, laboratoriais e evolutivos. O banco de dados foi revisado pelo pesquisador principal para depuração e correção de inconsistências antes da análise estatística.

Foram aplicadas análises descritivas (frequências, médias, medianas, desvio-padrão) para caracterizar a amostra e os parâmetros clínicos. Para comparar medidas hematológicas entre momentos inicial e final, foi utilizado o teste *t* pareado (ou equivalente não paramétrico), indicado pelos p-valores associados às variáveis contínuas, verificando mudanças significativas ao longo do tempo. Para examinar relações entre variáveis categóricas (ex.: sexo × prognóstico, idade × desfecho, leucócitos × risco), foi empregado o teste do qui-quadrado de Pearson, que avalia se a distribuição observada difere do esperado ao acaso. Valores de p<0,05 foram considerados estatisticamente significativos, indicando associações ou diferenças relevantes. Todas as análises estatísticas foram realizadas no software JAMOVI (versão 2.6)

O estudo foi conduzido em conformidade com a Resolução nº 466/2012 do Conselho Nacional de Saúde. O projeto foi aprovado pelo Comitê de Ética em Pesquisa do HEMOPE, sob o número de parecer 7.194.197 e CAAE 83316624.3.0000.5569.

RESULTADOS

A amostra analisada contemplou pacientes diagnosticados com LPA atendidos no HEMOPE entre 2017 e 2022. No total, foram registrados 67 casos, caracterizando-se como uma série representativa do cenário regional. A distribuição por sexo demonstrou predomínio feminino com 56,7% dos casos. Não houve associação significativa entre sexo e desfecho (p=0,194) ou classificação de risco (p=0,542). (Tabelas 1, 2 e 4)

A idade variou de 18 a 84 anos, com média de 41,7 anos (DP=13,9). Houve concentração em adultos jovens e de meia-idade, sendo que 44,8% tinham entre 20 e 39 anos e 44,8% entre 40 e 59 anos. Todos os pacientes que atingiram remissão estavam na faixa de 20–59 anos, enquanto a totalidade dos acima de 60 anos com desfecho conhecido evoluiu para óbito, associação estatisticamente significativa (p<0,001). (Tabelas 1 e 4)

A caracterização sociodemográfica apontou que 77,6% dos participantes se declararam pardos, 20,9% brancos. Em relação à procedência, 70,1% eram provenientes de áreas urbanas e 29,9% de regiões rurais. Esse perfil reflete a realidade populacional do estado e confirma o predomínio de indivíduos pardos e urbanos entre os pacientes acompanhados pelo serviço. (Tabela 1)

No tocante às comorbidades, observou-se que 19,4% dos pacientes apresentaram hipertensão arterial sistêmica, 6% diabetes mellitus, 3% HIV e 1,5% cardiopatia ou acidente vascular encefálico. A maioria (76,1%) não possuía comorbidades registradas. (Tabela 1)

Todos os pacientes apresentaram sintomas ao diagnóstico, confirmando a agressividade da LPA. O sangramento foi a manifestação mais frequente (72,7%), seguido por hematomas (59,1%), astenia (50%), febre (48,5%) e perda de peso significativa (9,1%). Visceromegalias foram registradas em apenas 4,5% dos casos. O sangramento esteve associado à classificação de risco (p=0,003), sugerindo que pacientes que apresentam esse sintoma são admitidos em estágios mais avançados da doença. (Tabela 1 e 2)

O hemograma inicial revelou anemia acentuada, com hemoglobina média de 8,17 g/dL (DP=1,8). Aproximadamente 29,9% dos pacientes estavam com valores <7 g/dL, 50,7% entre 7–10 g/dL e apenas 3% acima de 12 g/dL. Apesar da gravidade clínica, não houve associação significativa entre hemoglobina inicial e prognóstico (p=0,848). (Tabelas 2 e 4)

A contagem inicial de leucócitos apresentou ampla variação, com média de 24.790/μL e (DP=62.670/μL). Aproximadamente 44,8% apresentaram leucopenia (<4.000/μL), 40,3%

leucocitose (>10.000/μL) e 14,9% valores entre 4.000 e 10.000/μL. A leucocitose esteve significativamente associada à classificação de risco (p<0,001). (Tabelas 3)

A análise dos blastos e promielócitos circulantes mostrou valores elevados ao diagnóstico, com destaque para os promielócitos: média de 16.913 células/μL no grupo óbito contra 8.831 células/μL no grupo remissão. Houve redução expressiva dos promielócitos após o tratamento (de 10.647 para 702 células; p<0,001) e queda dos blastos (p=0,038). Em contrapartida, observou-se aumento dos neutrófilos segmentados (de 827 para 4.673; p<0,001), refletindo a eficácia do tratamento diferenciador na restauração da hematopoiese. (Tabela 3)

A contagem de plaquetas inicial teve média de 36.721/μL (DP= 34.901). Cerca de 70,1% dos pacientes estavam entre 10.000–40.000/μL e apenas 16,4% tinham valores >50.000/μL. A plaquetopenia foi descrita nos 67 pacientes incluídos no estudo e esteve associada à classificação de risco (p=0,009). Após o tratamento, houve elevação significativa das plaquetas (p<0,001), caracterizando resposta hematológica favorável. (Tabelas 2 e 3)

Os parâmetros de coagulação confirmaram a coagulopatia característica da LPA. O fibrinogênio inicial teve média de 1,91 g/L, sendo que 31,3% dos pacientes estavam abaixo de 1,5 g/L. Após o tratamento, houve elevação para média de 3,91 g/L (p<0,001). O Razão Normalizada Internacional (RNI) inicial foi de 1,47, reduzindo para 1,23 após o tratamento (p<0,001). (Tabela 3)

A análise da medula óssea foi principal exame para confirmar o diagnóstico. Em 89,6% observou-se uma medula com predomínio de promielócitos. Apenas casos isolados exibiram mieloblastos ou alterações hipocelulares. Assim, tem-se a demonstração, dentro dos resultados observados, da importância da análise morfológica como ferramenta diagnóstica. (Tabela 1)

A investigação molecular revelou positividade para o gene PML-RARA em 50,7% dos pacientes, enquanto 41,8% não tinham registro do exame. Não houve associação significativa entre a presença do marcador e prognóstico (p=0,190) nem com a classificação de risco (p=0,885). Embora importante para diagnóstico, o marcador não se mostrou preditor independente de evolução clínica nesta amostra. (Tabela 1)

A classificação de risco demonstrou predominância do risco intermediário (44,8%), seguido por alto risco (35,8%) e baixo risco (10,4%). Em 9% não havia registro disponível. Houve associação significativa entre risco e prognóstico (p=0,001). Pacientes de alto risco apresentaram

maior mortalidade (29,2%), enquanto os de baixo risco alcançaram os melhores desfechos, sem óbitos registrados. (Tabela 1 e 4)

Quanto aos desfechos clínicos, 67,2% (N = 45) dos pacientes alcançaram remissão, 20,9% (N = 14) evoluíram para óbito, 9% (N = 6) tiveram perda de seguimento e 7,5% apresentaram recidiva (N=5, dos quais 3 foram a óbito e 2 estavam em tratamento da remissão no momento da pesquisa). Os óbitos ocorreram principalmente entre pacientes de alto risco e acima de 60 anos. (Tabela 1)

O impacto da pandemia de COVID-19 foi avaliado: 13,4% (N=9) dos pacientes testaram positivo, 29,9% (N=20) negativos e 56,7% (N=38) não possuíam registros disponíveis. Não houve associação entre infecção e prognóstico (p=0,08). (Tabela 1,2 e 4)

O tempo médio de tratamento foi de 22,5 meses, variando entre óbito precoce e acompanhamentos superiores a três anos. A maioria concentrou-se entre 20 e 36 meses de seguimento. A resposta ao tratamento demonstrou melhora significativa dos parâmetros hematológicos. A hemoglobina elevou-se de 8,17 para 12,83 g/dL (p<0,001), as plaquetas de 36.761 para 226.333/μL (p<0,001) e o hematócrito de 23,74% para 37,86% (p<0,001). Houve aumento do fibrinogênio de 1,91 para 3,91 g/L (p<0,001) e redução do INR de 1,47 para 1,23 (p<0,001). (Tabela 3)

A normalização do perfil celular foi marcante. Os promielócitos reduziram de 41,72% para 2,44% (p<0,001) e os segmentados aumentaram de 9,31% para 53,07% (p<0,001). Ao final do tratamento, 67,2% (N=45) dos pacientes apresentaram contagens leucocitárias normais, o que fornece compreensão sobre a necessidade de uso e ação das terapias diferenciadoras, além das possíveis observações de eficácia dos protocolos adotados no HEMOPE. Discute-se os resultados, de forma mais efetiva, no tópico posterior.

DISCUSSÃO

Os achados deste estudo confirmam que a LPA é uma neoplasia hematológica grave, marcada por coagulopatia intrínseca e elevada mortalidade precoce. A taxa de remissão observada (67,2%) foi inferior à reportada em ensaios clínicos, que frequentemente ultrapassam 90%. Ainda assim, está dentro da variação descrita em estudos de mundo real, que situam as taxas entre 65% e 80%. Alguns fatores podem ter contribuído para essa diferença. O retardo diagnóstico, frequentemente relacionado à apresentação inicial com manifestações hemorrágicas graves, pode ter atrasado o início oportuno da terapia específica. Além disso, 40,3% dos pacientes apresentavam leucocitose acima de 10.000/μL, condição associada ao grupo de alto risco, sabidamente relacionada a maior mortalidade precoce e menor taxa de resposta

A idade média de 41,7 anos (DP=13,9) reforça que a LPA no Nordeste brasileiro afeta predominantemente adultos jovens e de meia-idade. Esse padrão é consistente com a literatura internacional, que descreve mediana de idade em torno de 44 anos. ²¹⁻²³ A distribuição por sexo mostrou leve predomínio feminino (56,7% vs 43,3%), mostrando manutenção do padrão na literatura local. ²⁴ Em estudos observacionais internacionais não foi vista a diferença de prevalência entre os sexos. Apesar do predomínio feminino, não houve associação entre sexo e prognóstico (p=0,194), confirmando evidências de que o gênero não é fator independente para sobrevida. ^{22,23} Esse resultado sugere que condutas terapêuticas podem ser aplicadas de forma uniforme em ambos os sexos, sem ajustes específicos.

O predomínio de pacientes pardos (77,6%) e de áreas urbanas (70,1%) reflete a composição demográfica e socioeconômica de Pernambuco. Esse achado ressalta a importância de estudos realizados em populações multiétnicas, uma vez que a maioria das pesquisas sobre LPA concentrase em países europeus e norte-americanos.²³ Nesse contexto, a análise de grupos populacionais brasileiros amplia a compreensão sobre possíveis diferenças biológicas e terapêuticas.

As manifestações clínicas foram observadas nos 67 pacientes presentes na pesquisa ,com destaque para sangramento (72,7%) e hematomas (59,1%). Esses achados confirmam a coagulopatia característica da LPA, descrita em até 90% dos casos no momento do diagnóstico. As complicações hemorrágicas representam a principal causa de morte precoce, respondendo por até 70% dos óbitos na literatura.^{22,25} A associação significativa entre sangramento e estratificação de risco (p=0,003) destaca a compreensão da importância desse marcador clínico na classificação prognóstica.

O fato de todos os pacientes acima de 60 anos com desfecho conhecido terem evoluído para óbito (p<0,001) ilustra o impacto prognóstico da idade e reforça relatos internacionais de queda acentuada da sobrevida nesse grupo.²² Esse padrão pode ser explicado por fragilidade clínica, maior carga de comorbidades e baixa tolerância a protocolos intensivos.

Os parâmetros laboratoriais corroboraram a heterogene idade da LPA: 44,8% dos pacientes apresentaram leucopenia, enquanto 40,3% tinham leucocitose acima de 10.000/μL. Essa distribuição evidencia a diversidade de apresentações hematológicas na doença. A leucocitose mostrou associação significativa com risco elevado (p<0,001), confirmando os achados do presente estudo e seu papel central na estratificação internacional.^{21,23} Esse marcador deve ser valorizado na prática clínica, visto que prediz complicações graves e maior mortalidade, sobretudo em contextos de atraso diagnóstico.^{14,23}

A plaquetopenia foi universal, com média de 37.029/μL, e 70,1% dos pacientes apresentaram contagens entre 10.000-40.000/μL. Tais valores alinham-se ao descrito em séries internacionais, que situam a mediana entre 25.000-40.000/μL.^{26,27} A associação significativa entre plaquetopenia e risco (p=0,009) confirma a relevância prognóstica desse marcador, amplamente reconhecido como preditor de sangramentos graves.

Os parâmetros de coagulação reforçaram a gravidade da coagulopatia: fibrinogênio médio de 1,89 g/L, com 31,3% abaixo de 1,5 g/L. A literatura internacional reporta valores médios entre 1,2-1,8 g/L, com hipofibrinogenemia em até 60% dos casos. Embora neste estudo não tenha havido associação estatística com desfecho (p=0,190), baixos níveis de fibrinogênio são reconhecidos como fator de risco para hemorragias fatais.^{26,28} Entende-se, assim, que o suporte transfusional precoce pode ter mitigado tais efeitos, reduzindo o impacto prognóstico observado.

O INR médio de 1,48 esteve próximo ao descrito na literatura (1,3-1,6), mas também não se associou significativamente ao desfecho clínico (p=0,006). Essa ausência pode decorrer do suporte precoce com plasma e crioprecipitado, que tende a corrigir alterações iniciais e neutralizar diferenças. Ainda assim, a monitorização contínua de INR e Tempo de tromboplastina parcial ativado permanece fundamental, dada a alta frequência de coagulação intravascular disseminada (CIVD) em pacientes com LPA.^{28,29}

A análise morfológica da medula óssea confirmou predomínio de promielócitos em 89% dos pacientes (média 73,7%). Esses achados demonstram a importância da avaliação morfológica

como ferramenta diagnóstica, além do seu valor conhecido para seguimento dos pacientes após tratamento.³⁰

A positividade para PML-RAR α foi registrada em apenas 50,7% dos casos, valor inferior ao esperado (>95%). Essa discrepância decorre, provavelmente, da ausência de registro em 41,8% dos prontuários, e não de uma característica biológica distinta da população. O fato de o resultado do exame não ter relação significativa com o prognóstico dos pacientes, vai de encontro a achados prévios de que, após a introdução do ATRA, o impacto prognóstico desse marcador foi neutralizado. $^{13, 30}$

A estratificação de risco revelou predominância de casos intermediários (44,8%) e alto risco (35,8%), proporções semelhantes às reportadas em séries internacionais. A menor frequência de baixo risco (10,4% *versus* 23% na literatura) pode refletir atraso diagnóstico, viés de centro terciário e limitações de prontuários retrospectivos. A associação significativa entre risco e prognóstico (p=0,001) reforça a relevância clínica desse critério, fundamental para orientar condutas terapêuticas e estratégias transfusionais. 14,23

A sobrevida global mostrou que dois terços dos pacientes alcançaram remissão, resultado compatível com padrões internacionais de mundo real. Contudo, a mortalidade de 20,9% reforça a persistência de desafios, sobretudo relacionados à coagulopatia e ao diagnóstico tardio. Essa discrepância frente a ensaios clínicos, que relatam mortalidade inferior a 4%, ilustra as dificuldades na transposição de protocolos para a prática cotidiana. ^{21,22}

Previamente, foi descrito na literatura uma redução no número de diagnósticos e aumento no intervalo sintoma-diagnóstico durante o período da pandemia do COVID-19, possivelmente refletindo barreiras de acesso ao sistema de saúde. Esse cenário sugere que a COVID-19 impactou de forma indireta o manejo inicial da LPA.¹⁹ No entanto, entre os casos acompanhados, a infecção por COVID-19 não demonstrou associação significativa com a estratificação de risco (p=0,436) ou com o prognóstico (p=0,326), indicando que a evolução clínica da doença não foi influenciada diretamente pela presença da infecção.

A resposta ao tratamento demonstrou melhora significativa dos parâmetros hematológicos: hemoglobina elevou-se de 8,16 para 12,57 g/dL, plaquetas de 37.029 para 226.333/μL, hematócrito de 23,85% para 37,19%, fibrinogênio de 1,89 para 4,09 g/L e redução do INR de 1,48 para 1,26. Esses achados evidenciam o impacto positivo do manejo adequado, com atenuação da coagulopatia e recuperação parcial da hematopoiese. A normalização do perfil celular, com queda expressiva de

promielócitos (41,72% para 2,44%) e aumento de segmentados (9,31% para 53,07%), confirma o efeito diferenciador do tratamento otimizado, alinhando os resultados locais às recomendações internacionais.²³

CONCLUSÃO

Este estudo evidenciou que a leucemia promielocítica aguda permanece como uma neoplasia hematológica grave, marcada por elevada mortalidade precoce e forte influência de fatores como idade avançada, leucocitose e plaquetopenia nos desfechos clínicos. Apesar disso, a taxa de remissão alcançada foi compatível com estudos de mundo real, reforçando a eficácia do protocolo terapêutico utilizado.

Entre os pontos fortes, destaca-se a caracterização abrangente da população estudada, com análise clínica, laboratorial e sociode mográfica, além da comparação com dados internacionais. A investigação acrescenta relevância ao cenário regional, sobretudo ao de monstrar o impacto indireto da pandemia sobre o diagnóstico e o acompanhamento dos pacientes. Como limitações, ressaltam-se o desenho retrospectivo, as falhas de registro em prontuários e o tamanho amostral relativamente restrito; ainda assim, os achados reforçam a necessidade de diagnóstico precoce, estratificação adequada de risco e suporte intensivo, fornecendo subsídios práticos para a melhoria do manejo da LPA em contextos semelhantes.

AGRADECIMENTOS

Ao final desta jornada científica, é com profundo respeito e gratidão que registro meus sinceros agradecimentos àque les que, direta ou indiretamente, contribuíram para a realização deste trabalho.

Quero iniciar agradecendo prime iramente a Deus e à Nossa Senhora, por me dar forças nos momentos de incerteza, pela sabedoria concedida e pela proteção em cada etapa do caminho.

Presto aqui uma homenage m especial e emocionada ao Dr. Mário Correia de Araujo, nosso orientador, cuja partida precoce durante o desenvolvimento desta pesquisa marcou profundamente a todos nós. Dr. Mário foi mais do que um orientador; foi um exemplo de dedicação, ética, humanidade e paixão pela ciência e pela hematologia. Seu olhar atento, sua orientação segura e sua confiança no nosso potencial deixaram marcas indeléveis em cada etapa deste trabalho. Que este estudo sirva também como forma de reconhecimento à sua trajetória profissional e como uma singela expressão da gratidão e admiração que nutrimos por ele. Sua memória seguirá viva em nossos caminhos acadêmicos e pessoais.

Agradeço ao Dr. Arilson Santos, coorientador comprometido e presente, por todo o apoio contínuo, pelas contribuições técnicas e pelo suporte essencial durante os momentos de transição. Sua dedicação ao projeto foi determinante para que seguíssemos com firmeza, mesmo diante das dificuldades.

Registro também minha sincera gratidão à Dra. Thatyana de Oliveira, que assumiu a orientação deste trabalho com coragem, generosidade e competência. Sua disposição em acolher o projeto, mesmo diante dos desafios, foi fundamental para a continuidade e conclusão desta pesquisa. Sua orientação atenta e segura contribuiu significativamente para o amadurecimento deste estudo e para minha formação acadêmica.

Aos amigos e parceiros de pesquisa, Alice, Antônio, Emília e Luísa, agradeço profundamente pela partilha do conhecimento, pelo companheirismo e pela presença constante durante os desafios e conquistas ao longo desta trajetória. Os diálogos, as trocas de ideias, os momentos de cansaço divididos e as conquistas celebradas juntos foram essencia is para tornar essa caminhada mais leve, significativa e produtiva. Trabalhar ao lado de vocês foi uma experiência de aprendizado e de verdadeira colaboração.

À minha família, que sempre foi minha base, agradeço pelo amor, paciência e incentivo incondicional. Vocês são meu alicerce e minha inspiração. Obrigado por acreditarem em mim, mesmo quando os desafios pareciam maiores do que as possibilidades.

E a todos que, de alguma forma, contribuíram com apoio, incentivo ou palavras de encorajamento ao longo desta jornada, deixo aqui meu mais sincero agradecimento.

REFERÊNCIAS

- 1. Soares-da-Silva F, Elsaid R, Peixoto MM, Nogueira G, Pereira P, Bandeira A, et al. Assembling the layers of the hematopoietic system: A window of opportunity for thymopoiesis in the embryo. Immunol Rev. 2023 Mar 3;315(1):54-70.
- Labarba AA, Silvestre IS, Martins GCF, Sampaio KC. Hematopoiesis: the importance for homeostasis. Braz J Health Rev [Internet]. 2023 Mar-Apr [cited 2024 May 24];6(2):7260
 7272. Available from: https://www.brazilianjournalofhealthreview.com.br/article/view/223.
- 3. Bispo JAB, Pinheiro PS, Kobetz EK. Epidemiology and etiology of leukemia and lymphoma. Cold Spring Harb Perspect Med [Internet]. 2019 Nov 14 [cited 2024 May 24];10(6).

 Available from: https://perspectivesinmedicine.cshlp.org/content/10/6/a034819.
- 4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin [Internet]. 2018 Nov [cited 2024 May 24];68(6):394-424. Available from: https://doi.org/10.3322/caac.21492.
- 5. Cheng Y, Yang X, Wang Y, et al. Multiple machine-learning tools identifying prognostic biomarkers for acute myeloid leukemia. BMC Med Inform Decis Mak [Internet]. 2024 Jan 2 [cited 2024 May 24];24(2). Available from: https://doi.org/10.1186/s12911-023-02408-9.
- 6. Iyer SG, Elias L, Stanchina M, Watts J. The treatment of acute promyelocytic leukemia in 2023: Paradigm, advances, and future directions. Front Oncol [Internet]. 2023 Jan 18 [cited 2024 May 24];12. Available full. from:https://www.frontiersin.org/articles/10.3389/fonc.2023.1234567/
- 7. Mannan A, Muhsen IN, Barragán E, Sanz MA, Mohty M, Hashmi SK, Aljurf M. Genotypic and phenotypic characteristics of acute promyelocytic leukemia translocation variants. Hematol Oncol Stem Cell Ther [Internet]. 2020 Dec [cited 2024 May 24];13(4):189-201. Available from: https://doi.org/10.1016/j.hemonc.2020.05.007.

- 8. Stahl M, Tallman MS. Acute promyelocytic leukemia (APL): remaining challenges towards a cure for all. Leuk Lymphoma [Internet]. 2019 Dec [cited 2024 May 24];60(13):3107 3115. Available from:https://doi.org/10.1080/10428194.2019.1613540.
- 9. Fang H, Wang SA, Hu S, Konoplev SN, Mo H, Liu W, Zuo Z, Xu J, Jorgensen JL, Yin CC, El Hussein S, Jelloul FZ, Tang Z, Medeiros LJ, Wang W. Acute promyelocytic leukemia: Immunophenotype and differential diagnosis by flow cytometry. Cytometry B Clin Cytom [Internet]. 2022 Jul [cited 2024 May 24];102(4):283-291. Available from: https://doi.org/10.1002/cyto.b.22085.
- 10. Jimenez JJ, Chale RS, Abad AC, Schally AV. Acute promyelocytic leukemia (APL): a review of the literature. Oncotarget [Internet]. 2020 Mar 17 [cited 2024 May 24];11(11):992-1003. Available from: https://doi.org/10.18632/oncotarget.27513.
- 11. Lima AR, Neves KTAP, Rosa VM. Leucemia promielocítica aguda, uma emergência médica: relato de caso e revisão de literatura. Braz J Health Rev. 2024;7(1):1541–1553. doi: 10.34119/bjhrv7n1-118.
- 12. Jameson JL, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J. Medicina Interna de Harrison 2 Volumes 21.ed. McGraw Hill Brasil; 2024.
- 13. Hey AC, Azambuja AP, Schluga YC, Nunes EC, Bendlin RM, Jamur VR. Acute promyelocytic leukemia: evaluation of diagnostic tests from 2000 to 2018 in a public hospital. Pediatrics. 2019;55(6):519-617.
- 14. Sanz M, Martin G, Rayón C, Debén G, Tormo M, Díaz-Mediavilla J, et al. Uncertain role of increased intensity chemotherapy with high-dose cytarabine in acute promyelocytic leukemia. Leukemia. 2001 Nov 29;15(12):1999–1999.
- 15. Kayser S, Conneely SE. Management of Acute Promyelocytic Leukemia at Extremes of Age. Cancers (Basel). 2023 Jul 15;15(14):3637. doi: 10.3390/cancers15143637.
- 16. Coombs CC, Tavakkoli M, Tallman MS, et al. Acute promyelocytic leukemia: where did we start, where are we now, and the future. Blood Cancer J. 2015 Apr 17;5(4). doi: 10.1038/bcj.2015.25.
- 17. Platzbecker U, Avvisati G, Cicconi L, et al. Improved Outcomes with Retinoic Acid and Arsenic Trioxide Compared with Retinoic Acid and Chemotherapy in Non-High-Risk Acute Promyelocytic Leukemia: Final Results of the Randomized Italian-German

- APL0406 Trial. J Clin Oncol. 2017 Feb 20;35(6):605-612. doi: 10.1200/JCO.2016.67.1982.
- 18. Sanz MA, Fenaux P, Tallman MS, et al. Management of acute promyelocytic leukemia: updated recommendations from an expert panel of the European LeukemiaNet. Blood. 2019 Apr 11;133(15):1630-1643. doi: 10.1182/blood-2019-01-894980.
- 19. Histórico da pandemia de COVID-19 OPAS/OMS. [Internet]. [Acesso em: 12 maio. 2023]. Disponível em: https://www.paho.org/pt/covid19/historico-da-pandemia-covid-19
- JP Freitas, HMF Fontes, EAS Moraes, RAM Melo. Leucemia promielocítica aguda em adultos durante a pandemia da COVID-19. Hematology, Transfusion and Cell Therapy. 2022;44(Suppl 2). doi: 10.1016/j.htct.2022.09.1154
- 21. Bidikian A, Bewersdorf JP, Kewan T, Stahl M, Zeidan AM. Acute Promyelocytic Leukemia in the Real World: Understanding Outcome Differences and How We Can Improve Them. Cancers. 2024 Dec 6;16(23):4092.
- 22. Dhakal P, Lyden E, Rajasurya V, Zeidan AM, Chaulagain C, Gundabolu K, et al. Early mortality and overall survival in acute promyelocytic leukemia: do real-world data match results of the clinical trials? Leukemia & Damp; Lymphoma. 2021 Mar 12;62(8):1949–57.
- 23. Gill H, Raghupathy R, Lee CYY, Yung Y, Chu HT, Ni MY, et al. Acute promyelocytic leukaemia: population-based study of epidemiology and outcome with ATRA and oral-ATO from 1991 to 2021. BMC Cancer. 2023 Feb 10;23(1).
- 24. .Fontes H, Freitas J, Moraes E, Melo R. ESTUDO DA LEUCEMIA PROMIELOCÍTICA AGUDA NO ESTADO DE PERNAMBUCO POR GEOPROCESSAMENTO. Hematology, Transfusion and Cell Therapy. 2022 Oct;44:S179–80
- 25. .Hambley BC, Tomuleasa C, Ghiaur G. Coagulopathy in Acute Promyelocytic Leukemia: Can We Go Beyond Supportive Care? Frontiers in Medicine. 2021 Aug 17;8.
- 26. Gill H, Yung Y, Chu HT, Au WY, Yip PK, Lee E, et al. Characteristics and predictors of early hospital deaths in newly diagnosed APL: a 13-year population-wide study. Blood Advances. 2021 Jul 16;5(14):2829–38.
- 27. .Dally N, Hoffman R, Haddad N, Sarig G, Rowe JM, Brenner B. Predictive factors of bleeding and thrombosis during induction therapy in acute promyelocytic leukemia—a single center experience in 34 patients. Thrombosis Research. 2005 Jan;116(2):109–14.

- 28. Lou Y, Suo S, Tong H, Qian W, Mai W, Meng H, et al. Hypofibrinogenemia as a clue in the presumptive diagnosis of acute promyelocytic leukemia. Leukemia Research. 2016 Nov;50:11–6.
- 29. Breen KA, Grimwade D, Hunt BJ. The pathogenesis and management of the coagulopathy of acute promyelocytic leukaemia. British Journal of Haematology. 2011 Nov 3;156(1):24–36.
- 30. Figueiredo-Pontes LL, Catto LFB, Chauffaille M de LLF, Pagnano KBB, Madeira MIA, Nunes EC, et al. Diagnosis and management of acute promyelocytic leukemia: Brazilian consensus guidelines 2024 on behalf of the Brazilian Association of Hematology, Hemotherapy and Cellular Therapy. Hematology, Transfusion and Cell Therapy. 2024 Oct;46(4):553–69.

TABELAS

Tabela 1 - Características sociodemográficas e clínicas de pacientes com leucemia promielocítica aguda em um hospital terciário entre 2017 e 2022

Variável	N	9/0
Procedência		ſ
Zona Rural	20	29,9
Zona Urbana	47	70,1
Cor		1
Outra	1	1,5
Branca	14	20,9
Parda	52	77,6
Idade		
<20 anos	1	1,5
20-39 anos	30	44,8
40-59 anos	30	44,8
60-79 anos >80 anos	4 2	6,0
ı		3,0
Sexo		Г
Feminino	38	56,7
Masculino	29	43,3
Comorbidades		
Hipertensão	13	19.4
Diabetes Mellitus	4	6.0
HIV	2	3.0
Outras	5 51	7,5 76.5
Não informado	31	70.3
Sintomático		T
Sim	66	100
Não	0	0
Não informado	1	_
Sangramento		
Sim	48	72,7
Não	18	27,3
Não informado	1	

Perda de peso		
Sim Não Não informado	6 60 1	9,1 90,9
Astenia I		
Sim Não Não informado	33 33 1	50 50
Febre		Τ
Sim Não Não informado	32 34 1	48,5 51,5
Visceromegalias		
Sim Não Não informado	3 63 1	4,5 95,5
Hematomas		Γ
Sim Não Não informado	39 27 1	59,1 40,9
Covid-19		I
Positivo Negativo Não informado	9 20 38	13,4 29,9 56,7
Análise da Medula Óssea		
Promielócitos Não Informado Demais achados	60 4 3	89.6 6.0 4.5
PML-RARA		
Positivo Negativo Não informado	34 5 28	50.7 7.5 41.8
Classificação de risco		
Alto risco	24	35,8

Risco intermediário Baixo risco Não informado	30 7 6	44,8 10,4 9
Prognóstico/Desfecho		
Remissão	45	67,2
Óbito	11	16,4
Recidiva	2	3
Remissão + Óbito	3	4,5
Perda de seguimento	6	9
Total	67	Ī

Tabela 2 – Relação de variáveis com a classificação de risco dos pacientes com leucemia promielocítica aguda em um hospital terciário entre 2017 e 2022

CLASSIFICAÇÃO DE RISCO					
Variáveis	Alto Risco (n)	Intermediário (n)	Baixo Risco (n)	Não informado (n)	
Sexo				Т	
Feminino	13	18	5	2	
Masculino	11	12	2	4	
Teste de qui-quadrad	o: p-valor = 0.542				
Sangramento					
Sim	20	22	1	5	
Não	4	8	6	0	
Teste Exato de Fishe	r: p-valor=0.003				
INR					
<1,2	1	3	2	0	
1,2-2,0	18	20	4	4	
•	1	0	0	1	
>2	1	U	O .	_	
>2 Não informado	4	7	1	1	
	4	•	1	1	
Não informado Teste Exato de Fishe	4	•	1	1	
Não informado	4	•	2	1	

>1,5	7	17	4	3
Não informado	5	8	1	1
Гeste Exato de Fisher:	p-valor = 0.164			
Leucócito inicial				
>10000	22	2	0	3
/10000			•	1
4000-10000	0	7	2	1
4000-10000 <4000	2	7 21	5	2
4000-10000 <4000 Teste Exato de Fisher:	2	,	-	2
4000-10000 <4000 Γeste Exato de Fisher: Plaquetas inicial	2	21	-	1 2
4000-10000 <4000 Γeste Exato de Fisher: Plaquetas inicial <10000	p-valor<0.001	0	-	1 2 1 4
4000-10000 <4000 Teste Exato de Fisher: Plaquetas inicial	2	21	-	1 2 1 4 1

Tabela 3 – Exames laboratoriais dos pacientes com leucemia promielocítica aguda em um hospital terciário entre 2017 e 2022

Variáveis	N	%
Hemoglobina		
< 7	20	29,9
7-10	34	50,7
10-12	11	16,4
>12	2	3
Leucócitos Iniciais		Γ
<4000	30	44,8
4000-10000	10	14,9
>10000	27	40,3
Leucócitos Finais		T
<4000	11	16,4
4000-10000	45	67,2
>10000	7	10,4
Não informado	4	
Variáveis	Média	Desvio Padrão

Leucócitos iniciais	24.790	62.670
Promielócitos iniciais	10.647	20.785
Promielócitos finais	702	4.465
Segmentados iniciais	827	1.775
Segmentados finais	4.673	5.337
Blastos iniciais	3.666	13.437
Blastos finais	2.802	22.751
Promielócitos iniciais em pacientes que	16.913	25.680
foram a óbito		
Promielócitos iniciais em pacientes que atingiram remissão	8.831	19.289
Hemoglobina inicial	8,17	1,8
Hemoglobina final	12,83	2,9
Hematócrito inicial	23.74	4.86
Hematócrito final	37.86	8.11
Plaqueta iniciais	36.721	34.901
Fibrinogênio inicial	1,91	1,0
Fibrinogênio final	3,91	2,0
INR inicial	1,47	0,32
INR final	1,23	0,54

Tabela 4 – Relação de variáveis com desfechos dos pacientes com leucemia promielocítica aguda em um hospital terciário entre 2017 e 2022

Sexo Feminino Masculino Idade < 20 20-39	0 2	28 17 Teste de qui-quadr	1 1 rado: p-valor = 0	0 3	2 4
Masculino Idade < 20	0 2	17 Teste de qui-quadr	1	3	
Idade < 20	0 2	Teste de qui-quadr			4
< 20	0 2		ado: p-valor = 0	.194	
< 20	2	0			
	2	Λ			
20-39		0	1	0	0
	_	24	1	1	2
40-59	5	21	0	2	2
60-79	2	0	0	0	2
> 80	2	0	0	0	0
	1	Teste de qui-quadr	ado: p-valor < 0.	001	
Hemoglobina					
< 7	1	15	1	1	2
7-10	6	21	1	2	4
10-12	3	8	0	0	0
>12	1	1	0	0	0
	ı	Teste de qui-quadr	ado: p-valor = 0.	848	
Leucócito					
inicial					
<4000	4	22	0	2	2
4000-10000	1	8	0	0	1
>10000	6	15	2	1	3
	ı	Teste de qui-quadr	ado: p-valor = 0.	644	
Leucócito final					
<4000	5	4	0	1	1
4000-10000	1	41	2	1	0
>10000	5	0	0	1	1
Não informado	0	0	0	0	4
	ı	Teste de qui-quadr	ado: p-valor < 0.	001	
Plaquetas					
Iniciais	0	1	0	0	1
<10000	0	1	0	0	1
10000-40000	10	30	1	2	4
40000-50000	1	5	0	0	1
>50000	0	9	1	1	0

INR					
<1,2	0	5	0	1	0
1,2-2	10	30	1	2	3
>2	0	0	0	0	0
Não informado	1	10	1	0	2
	Те	este Exato de Fis	her: p-valor = 0.	084	
Fibrinogênio					
<1	1	6	1	0	0
1-1,5	3	8	1	1	0
>1,5	5	20	0	2	4
Não informado	2	11	0	0	2
	Te	este Exato de Fis	her: p-valor = 0.	704	
Classificação de risco					
Alto risco	7	15	2	0	0
Intermediário	3	23	0	2	2
Baixo risco	0	6	0	1	0
Não informado	1	1	0	0	4
	T	este Exato de Fis	sher: p-valor= 0.	001	
Covid					
Negativo	1	18	0	1	0
Positivo	0	8	0	0	1
Não informado	10	19	2	2	5
	Т	este de qui-quad	rado: p-valor = ().08	